Healthcare community question-answering (CQA) forums provide multi-perspective insights into patient experiences and medical advice. Summarizations of these threads must account for these perspectives, rather than relying on a single “best” answer. This paper presents the participation of the WisPerMed team in the PerAnsSumm shared task 2025, which consists of two sub-tasks: (A) span identification and classification, and (B) perspectivebased summarization. For Task A, encoder models, decoder-based LLMs, and reasoningfocused models are evaluated under finetuning, instruction-tuning, and prompt-based paradigms. The experimental evaluations employing automatic metrics demonstrate that DeepSeek-R1 attains a high proportional recall (0.738) and F1-Score (0.676) in zero-shot settings, though strict boundary alignment remains challenging (F1-Score: 0.196). For Task B, filtering answers by labeling them with perspectives prior to summarization with Mistral-7B-v0.3 enhances summarization. This approach ensures that the model is trained exclusively on relevant data, while discarding non-essential information, leading to enhanced relevance (ROUGE-1: 0.452) and balanced factuality (SummaC: 0.296). The analysis uncovers two key limitations: data imbalance and hallucinations of decoder-based LLMs, with underrepresented perspectives exhibiting suboptimal performance. The WisPerMed team’s approach secured the highest overall ranking in the shared task.